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Bifurcation Phenomena near Homoclinic Systems: 
A Two-Parameter Analysis 
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The bifurcations of periodic orbits in a class of autonomous three-variable, 
nonlinear-differential-equation systems possessing a homoclinic orbit associated 
with a saddle focus with eigenvalues (O -+ i60, )t), where 10/~ I < 1 (Sil'nikov's 
condition), are studied in a two-parameter space. The perturbed homoclinic 
systems undergo a countable set of tangent bifurcations followed by period- 
doubling bifurcations leading to periodic orbits which may be attractors if 
Ip/~,l < 1/2. The accumulation rate of the critical parameter values at the 
homoclinic system is exp(-2~rlO/Wl). A global mechanism for the onset of 
homoelinicity in strongly contractive flows is analyzed. Cusp bifurcations with 
bistability and hysteresis phenomena exist locally near the onset of homoclinic- 
ity. A countable set of these cusp bifurcations with scaling properties related to 
the eigenvalues p _+ i~ of the stationary state are shown to occur in infinitely 
contractive flows. In the two-parameter space, the periodic orbit attractor 
domain exhibits a spiral structure globally, around the set of homoclinic 
systems, in which all the different periodic orbits are continuously connected. 

KEY WORDS: Bifurcation theory; homoclinic orbit; periodic attractor; 
chaotic dynamics; bistability; hysteresis; scaling. 

1. INTRODUCTION 

Nonlinear systems driven far from equilibrium can exhibit a rich variety of 
transitions to periodic, multiperiodic, or nonperiodic regimes. The modeling 

I Facult~ des Sciences, Universit~ Libre de Bruxelles, Campus Plaine, C. P. 231, 1050 Bru- 
xelles, Belgium. 

2 Permanent address: Department of Chemistry, University of Toronto, Toronto, Ontario 
M5S IA1, Canada. 

697 
0022-4715/84/0600-0697503.50/0 �9 1984 Plenum Publishing Corporation 



698 Gaspard, Kapral, and Nicolis 

of these phenomena at the macroscopic level is usually based on a set of 
equations describing a continuous time flow, such as the Navier-Stokes or 
Boussinesq equations of hydrodynamics and the mass-balance equations of 
chemical kinetics. While considerable progress has been achieved in the 
perturbative treatment of these equations in the vicinity of simple or 
degenerate bifurcation points, (1) their global features remain poorly known. 
In fact, much of our knowledge in this latter direction concerns discrete 
time mappings. (2'3) These dynamical systems are connected to the underly- 
ing continuous time flow through the Poincar6 surface of section. However, 
if one or several stationary states are embedded in the attracting part of the 
flow, the motion in the phase space is locally distorted so that the bifurca- 
tion analysis of the trajectories requires a decomposition of the flow in 
several successive mappings. 

This situation occurs in homoclinic systems which may play an impor- 
tant role in determining the global properties of continuous time flows as 
pointed out recently by some authors. (4-8) A homoclinic orbit is a structur- 
ally unstable trajectory which is doubly asymptotic to a fixed point of the 
saddle type as t ~ + oo and - oo.(9) 

The importance of such orbits is brought out by the following unex- 
pected result due to Sil'nikov. (1~ 

Consider the three-variable system 

= o~x - ,o~v + P A x ,  y , z )  

2 = co~,x + O~v + Q~,(x, y , z )  (1.1) 

= ~ z  + R A x ,  y , z  ) 

where /~ is a parameter, and the functions P~,, Q~,,R~ are analytic in 
x, y , z ,  tL vanishing with their first derivatives at the origin (0, 0,0). We 
suppose that the origin behaves as a saddle focus and that there exists for 
/~ = 0 a homoclinic orbit F o biasymptotic to the origin. Then, if v o = Ipo/Xo] 
< 1 :  

(i) For /~ v ~ 0, there exist periodic trajectories in the flow whose 
number grows unboundedly as/ t  ~ 0. 

(ii) For/~ = 0, the flow contains in a neighborhood of I" 0 a subset of 
trajectories which display random behavior, in the sense that they are in 
one-to-one correspondence with a shift automorphism with an infinite 
number of symbols. 

On the other hand, for 2-variable homoclinic systems and for the other 
types of saddle points, in particular if Ip0/Xo[ > 1, the homoclinie orbit 
generates a single limit cycle when/~ v a 0. (9'1~ 

The relation between homoclinic trajectories and complex nonperiodic 
behavior of the chaotic type has been explored for a number of model 
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systems such as the Lorenz or R6ssler models. (5-8'11) In particular, Gaspard 
and Nicolis (6-s) showed numerically that the onset of homoclinicity in 
R6ssler's model is reflected by several qualitative changes of nearby non- 
periodic motions: transition from "spiral"- to "screw"-type chaos display- 
ing stronger mixing properties, or appearance of increasing number of 
oscillatory spikes between intermittent bursts. The transition to screw-type 
chaos is accompanied by a transition in the next-amplitude map obtained 
from Poincar6 surface of section transverse to the two-dimensional unstable 
manifold of the flow from a bell-shaped curve to a curve displaying an 
additional ascending branch. Such double extremum maps have been 
studied systematically by Fraser and Kapral (12) and shown to give rise to 
cusp bifurcations with bistability and hysteresis of periodic or.bits. An 
example of this behavior is again provided by the R6ssler flow. 

The principal goal of the present work is to sharpen the connection 
between these phenomena and the existence of homoclinic orbits in the 
system. Furthermore our study completes the above-mentioned Sil'nikov's 
result, providing information on the possible (periodic) at t rac tors  existing 
near this class of homoclinic systems. 

In Section 2 we consider a general three-variable system possessing a 
homoclinic orbit of the Sil'nikov type. We emphasize that the existence of 
such an orbit allows one to construct a two-dimensional map which 
captures the properties of the flow near the homoclinic orbit and the 
associated saddle, and we display this map explicitly. 

Section 3 is devoted to the bifurcation analysis of the periodic orbits in 
the perturbed Sil'nikov homoclinic systems using the above-mentioned 
two-dimensional map. A general method is proposed which allows one to 
discuss the various types of bifurcations existing locally in a two-parameter 
space. We construct the bifurcation loci of these orbits and determine the 
conditions under which the (tangent) bifurcation may lead to attracting 
behavior. A rather remarkable feature is that the periodic orbits are 
generated in pairs for parameter values accumulating at/L = 0 with a rate 
which depends solely on the linear stability properties of the flow near the 
saddle. A similar result has been reported quite recently by Glendinning 
and Sparrow, (13) whose preprint came to our attention when this work was 
completed. 

In Section 4 we study the consequences of the folding of the unstable 
manifold, observed repeatedly in model systems, (6'8) on the structure of the 
bifurcation diagram. We model the folding by considering a map in which 
the quadratic part is dominant and show that the periodic attractors may 
undergo a countable set of cusp bifurcations with bistability and hysteresis. 
Attention is focused on the limiting case in which the contraction of the 
flow along the stable manifold is much greater than the expansion along 
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the unstable manifold. This case is further analyzed in Section 5 with 
one-dimensional-map models of the flow. We show that these systems 
display the main bifurcations found in Section 4 and, in addition, they 
suggest some further interesting properties of the underlying flow. 

The main conclusions are drawn in Section 6, where an attempt is also 
made to relate the results with some experimental data on the Belousov- 
Zhabotinski chemical reaction. 

2. REDUCTION TO A TWO-DIMENSIONAL MAP 

One of the characteristic properties of a homoclinic orbit is its struc- 
tural instability: the orbit is the intersection of stable and unstable mani- 
folds of the saddle focus and in the generic case these two manifolds no 
longer intersect if the flow is perturbed. Nevertheless, for parameter values 
near those characterizing the homoclinic situation a general pattern of 
reinjection of trajectories near the saddle focus should subsist. In this 
section we show how this property allows one to construct a two- 
dimensional map capturing the essential features of the flow. 

We consider a general system described by the set of autonomous 
differential equations (1.1), with /~ now understood to be a set of n 
parameters, /z = (~1, ~2 . . . . .  ~n), and suppose that when /~ = 0 a homo- 
clinic orbit is contained in the flow and that Sil'nikov's condition e 0 
= Ip0/)t0] < 1 applies. For definiteness we further require that )t o < 0 < P0, 
but equivalent results for the opposite inequality can be established by 
considering the time-reversed flow. 

The flows with a homoclinic orbit form a codimension one subset in 
the set of all the analytic vector fields (1.1). So in the n-dimensional 
parameter space, the homoclinic systems lie on an ( n -  1)-dimensional 
hypersurface containing the point /~--0. We assume that the parametric 
family of systems (1.1) is transverse to the codimension one set of homo- 
clinic systems. 

The analysis of the flow is accomplished through the study of a 
two-dimensional mapping directly constructed from the flow in the vicinity 
of the saddle focus. To this end we assume that it is possible to carry out a 
(C 3) coordinate transformation 3 which linearizes Eqs. (1.1) near the saddle 
focus 0: in a neighborhood V of 0 Eqs. (1.1) in new coordinates take the 

3 The existence of such a transformation follows from a theorem of Hartman (14) provided the 
eigenvalues do not form any low-order resonances. While the results obtained here are 
independent of the resonance condition on the eigenvalues, this requirement facilitates 
calculations. 
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form 

= + p,y (2.1) 

2 = )k~z 

We have also denoted the new coordinates (x, y, z) since the old coordi- 
nates will not enter in the sequel. The geometrical features of the flow 
which are relevant for the construction of the mapping are sketched in Fig. 
1. The unstable manifold W u of the saddle focus is the plane z = 0, while 
the stable manifold W s is the line x = y  -- 0. We imagine that 0 is enclosed 
by a cylinder which is defined by 0 < r < R and - Z  < z < Z in the 
cylindrical coordinates x = r cos % y = r sin ~ and z = z. 

Two successive maps of the flow may now be constructed: (1) the map 
T O induced by the flow within the cylinder in the vicinity of the saddle 
focus, which maps points from the upper disk Y'I of the cylinder to its 
lateral surface Z0; and (2) the map T 1 constructed from the global part  of 

2 

• 

U 

Eo 
u 

Fig. 1. Schematic phase portrait of the saddle focus 0, the cylinder U, and the homoclinic 
orbit F 0 existing when/ t  = 0 (see text). 
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the flow near/~ = O, which maps points f rom E o to Z~. The equations for El 
and Z o are, respectively, 

El: Z 1 = Z, 0 < r I < R 
(2.2) 

Zo: r 0 = R, -~r  < CPo < qr 

The  ep coordinate  is chosen so that the homoclinic orbit F 0 crosses E 0 at 
% = 0, z 0 = 0. (Points on the two surfaces will be labeled with the appropri-  
ate subscript.) The map T 0 : ( x  1, yl)---> @0,Y0) follows from direct integra- 
tion of Eqs. (2.1): 

ZoV [_ 
x , =  R ( - ~  ) c~  

To: Z0" 
y , =  R ( ~ - ) s i n ( ~  0 

w log Yo ) 
+N ~ -g(G,Zo) 

w log zT~ ) +N ~ -o(G,Zo) 
(2.3) 

with v = [O/X[. We hereafter  choose w to be positive. The transit time of the 
trajectory in the cylinder is given by [ = (1/IXl)log(Z/Yo). 

Here  and below we no longer consider the eigenvalues as functions of 
the/~ parameters  but  as parameters  themselves, i.e., the parameters  of the 
class of systems studied are now (O, w, X, lh . . . . .  I~n). The bifurcations of 
the original parametr ic  family (1.1) will be obtained thereafter because the 
set (Or, % ,  h~) is embedded  in the (p, w, X)-parameter subspace. 

Owing to the existence of a homoclinic  orbit when /x = 0, the flow 
outside the cylinder maps 51. 0 onto Y~1, 

( x, = L~(+0,Zo) 
TI :  (2.4) 

Yl = M,(ePo,Zo) 

with L0(0, 0) = M0(0, 0) = 0, which is simply the condit ion for the existence 
of a homoclinic  orbit in our construction:  ( %  = 0, %= 0) on W, is mapped  
into (x l = 0 1  Y 1 = 0 )  on W s. In view of this latter condit ion and the 
assumed C 3 character  of the linearizing t ransformation we may  write the 
T 1 map as 

Ix, = A + al~ 0 + a2z o + all~O 2 + 2a,zCpoZo + az2z~ + O(epeo zq) 
I 

- A + d ( + o )  + O(zo)  
T1 (2.5) 

/ y  1 = B + blCPO + b2z o + bl,q9 ~ + 2b,zcpoZ o + b22 z2 + O(qggzqo) 
I 

[ - B + ~(+o) + O(zo) 

with A = B = 0 when/~  = 0 (p  + q > 3). Note  that the T 1 map preserves 
the orientat ion of the phase space so that its Jacobian (cf. Section 3.1) is 
positive. The  bifurcat ion analysis will be made  in the parameter  space of 



Bifurcation Phenomena near Homoclinic Systems 703 

the coefficients of the part ial  Tay lo r  expansion (2.5). The  bifurcat ions for  a 
pa ramet r ic  family  of systems (1.1) could thereafter  be deduced f rom this 
s tudy since such a family  is e m b e d d e d  in the set of systems (2.5). In  Eqs. 
(2.5), we have  isolated A and B as the impor tan t  b i furcat ion pa ramete r s  
because  they vanish when /~ = 0; we shall confine our  a t tent ion subse- 
quent ly  to the (A, B ) - p a r a m e t e r  space. 

G iven  the structure of the T~ m a p  in Eqs. (2.5) we m a y  immedia te ly  
deduce  the locus of homocl in ic  systems in the (A, B)  plane. A homocl in ic  
orbit  exists in the flow whenever  W u and  W s intersect. Since z 0 = 0 is the 
equat ion  of W u N Eo, the curve Wu N E 1 is the m a p p i n g  of z o -- 0 by  T l, 
i.e., 

x = A + d ( % )  (2.6) W~ N E ]  : 
yj = B + ~(q~0) 

But (x I = 0 , y  1 = 0) is the equat ion defining W s N ~ t ,  so the flow contains a 
homocl in ic  orbit  if a cp0 exists such that  

H :  ( ;  = -d(q~~ (2.7) 

These  equat ions specify a mapp ing  of the point  % of W u n Z o onto  the 

B En 

/ /~/// E',,+I 
E~ 

Fig. 2. Schematic diagram of the (A, B) parameter space. H is the set of homoclinic systems 
(2.7). S is a spiral for q~o fixed and Zo---)O of the family (3.1). 3, is the center (2.7) of the spiral 
S. E k and E~ are curves of the envelope of family (3.1). 
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(A, B)-parameter plane and demonstrate that the homoclinic systems lie on 
the line H (see Fig. 2) in this plane (so that the homoclinic systems form a 
codimension one subset). 

The flow maps a domain of E o onto E o by the combined map 
T= ToT 1 :(r We remark that, as a consequence of the 
assumed regularity of Eqs. (1.1) and that of the linearizing transformation, 
the functions L,  and M~ determining the T 1 map exist in a neighborhood a 0 
of % = z o = 0 on 51 o defined by 

o o: - 7 1 < % < 7 ,  - ~ < z  o<~" (2.8) 

with ~/< ~r and f < Z. All of the results subsequently deduced from the 
study of the map T concern flow trajectories crossing Y'o in the domain %. 
In the next section the periodic trajectories of the flow are studied through 
the above-defined map. 

3, B IFURCATION ANALYSIS OF THE PERIODIC ORBITS 

Consider a periodic orbit going through the point (%, Zo) of E o which 
is a fixed point of the map T, so that (%,Zo)= (r Z0). The question is: 
What is the (A, B) flow that contains this orbit? Using Eqs. (2.3) and (2.5) 
we may write for such an orbit 

) - - o ( z 0 )  
(3.1) 

! 

Z o ) s i n ( % +  ~ ,  Zo o( 0) 

These equations define a mapping P from this set of periodic orbits in the 
phase space onto the parameter plane. Since we consider flows in which 
Sil'nikov's condition v < 1 is satisfied the terms O(z~) dominate in the limit 
z0--)0. For % constant in such a limit Eqs. (3.1) generate a logarithmic 
spiral in the (A, B) plane whose center 7 = ( - J ( % ) ,  - ~ ( % ) )  lies on the 
line H of homoclinic systems (Fig. 2). The spiral is parameterized by ~0 and 
if r varies the center of the spiral moves along H while the entire spiral 
rotates. This family of spirals is the representation in the (A, B) plane of the 
set of all the flows containing periodic orbits of the once-iterated T map. 

The P mapping is not one-to-one but several-to-one. The number of 
(r points in the phase space mapped by P on an (A,B) point 
corresponds to the number of periodic orbits in the (A, B) flow. The locus 
of points in the (A, B) plane where this number changes corresponds to the 
locus where a bifurcation occurs in the flow. Thus, to study the bifurcations 
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of the periodic trajectories, we must consider the singularities of the P 
mapping and the stability of the periodic orbits near these singularities. 

As P is a mapping from a plane onto a plane, according to the general 
theory of such mappings, (iS) there exist two types of structurally stable 
singularities: (1) folds which are curves and (2) cusps, which are isolated 
points on the fold curves. 

In the following sections, we present a discussion of the bifurcations of 
periodic orbits occurring near these singularities of the P mapping and a 
study of their stability. 

3.1. Tangent Bifurcation 

The fold lines are the envelopes of the family of spirals (they are 
schematically depicted in Fig. 2). It is clear that a fold cannot exist at 
points where the Jacobian determinant of P is different from zero since 
there the P map is invertible. In other words the fold loci are the roots of (15) 

J = OzoA O~oB - O~oA O~oB = 0 (3.2) 

By a straightforward calculation one may demonstrate that one of the 
eigenvalues of the linearized T map is A = + 1 on the fold line, thus, this 
line can be identified as the line of tangent bifurcations (tangent boundary) 
in the ( A , B )  plane. Using Eqs. (2.3) and (2.4) for the T o and T 1 maps, 
respectively, the linearized T map reads 

6C~o = Q0-1 _ 0~oG 0~oF J 0~0M 0~0M &Po 

whose characteristic equation multiplied by Qo is 

A2(0z0F0~0G - O~oFOzoG) 

- A(O~oFOwoM + O~oG azoL - OwoFO~oM - OzoG OwoL ) 

+ (OzoLO~oM - a~oLa~oM) = 0 (3.4) 

or 

A 2 -  C A +  D = 0  

Here Qo = ~zoFO~o G - O~oFOzoG is the Jacobian of the T o map. If A = + 1 
is substituted into this characteristic equation the envelope equation J = 0 
is recovered. 

We next study the structure and character of the fold or tangent 
bifurcation lines. Direct calculation of the Jacobian determinant leads to 
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the following envelope or tangent boundary equation: 

[~lCrt(q00) 2 "1- ~ ' (~0)2] l /2cos  r -~- N og~-  + arctan NO + a r c t a n - -  

(0 2 "4- 102) 1/2 ~ -  ''}- O(Z~)I 

] '(%) 
(3.5) 

When z~ ~ 0  the right-hand side of Eq. (3.5) vanishes and provided 
d ' ( % ) 2  + ~ ,(%)2 va 0 for % near zero the solutions for the fold loci are 
the roots of the cosine function: 

z~(%) = Z exp ] I 2~rn + ~ 3 e / 2  + % + arctan ~P 

+ arctan ~,(%-------~ + A,I,* (3.6) 

where A,I~* = O(z~ ~) + O(z~ l-") and n is large enough. Thus there exist 
two countable sets of fold loci. We may find the tangent boundaries in the 
(A, B) plane by simply substituting Eq. (3.6) into the P map, Eqs. (3.1): 

A*=-d(~~165 \3~r /2]]  

+ 0 (e -  2~"(Ixl/'~)) (3.7) 

B*=-~(%)+RV(%)exp{-~[2~n+(~'/2]]} \ 3 ~ / 2 ] ]  

+ O(e -2~n(Ixl/~)) 

We shall not write the explicit forms of the functions U(%) and V(%) since 
their detailed structure is not important for the discussion that follows. 
(They are not simultaneously vanishing when % = 0.) Equation (3.7) shows 
that on both sides of the line of homoclinic systems H there is a family of 
tangent bifurcation lines accumulating at H with a geometric rate. 

More specifically, from Eqs. (3.7), the critical parameter values/~*- for 
a one-parameter family of systems (1.1) transverse to the codimension one 
set H of the homoclinic systems satisfy 

lim - exp( -  2~Jpo/O~ob (3.8) 
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where the __ superscript refers to the fact that two such sequences appear 
on either side of H and 00 -+ ito0 are the complex conjugate eigenvalues at 
parameter value g = 0. 

Equation (3.8) expresses the interesting result that the accumulation 
rate of these tangent bifurcation loci is determined solely by the p and to 
parameters characterizing the flow winding motion about the saddle focus. 
We shall comment in more detail about this result in the subsequent 
sections, but first we study the stability of the solutions produced by the 
tangent process. 

The stability of the solutions can be determined by referring to the 
characteristic equation (3.4). We noted that on a fold line one eigenvalue is 
A* = + 1 and, thus, denoting the values of C and D on this line by C* and 
D*, respectively, we obtain from Eq. (3.4) that C*- -1  + D*. With this 
condition the other eigenvalue of Eq. (3.4) is 

A* = D* - Q1 _ Oz~176 3~~176 (3.9) 
Qo ( R 2 p l Z ) ( z ~ I Z )  2~-' 

which shows that A* is the ratio of the Jacobian determinant of the T 1 
map, Ql, to that of the T o map, Q0- The results of the explicit calculation of 
these quantities is given in the last part of Eq. (3.9). 

If the fold line is traversed, the periodic orbit goes through a point 
(z~(cP0) + Az0, q~0) in a neighborhood of the fold point (z~(%), %). Setting 

C = l + D * + q ,  D = D * + 1 [  2 

We find that the eigenvalues of the characteristic equation are now given 
by 

1[ l - -  i[ 2 
A+ = 1 + - -  + 0(1[ 2 ) 

l -  D* (3.10) 
A_ = D*(1 + O(1[)) 

with 

e = (~2 4- e~)'/2 and 
(3.11) 

q - 112 = Az0 x (a nonvanishing function of q0 0 and z3) 

It follows that the correction to the critical eigenvalue A+ is proportional to 
Az 0 and can therefore have both positive and negative values around the 
fold loci. 

From this fact and Eq. (3.9) we may deduce the following results. If 
Qi =# 0 [note: Ql 4= 0 implies that J'(~0o)2 + ~'(r # 0 which was as- 
sumed earlier], then (1) for p < 1/2, D * o 0  as z ~ ' ~ 0  and a pair of stable 
node-saddle periodic orbits is generated at the tangent bifurcation, and (2) 
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for 1/2 < u < 1, D*---> oo as z~--->0 and a pair of unstable node-saddle 
orbits is generated. 

Having established the locus and character of the tangent bifurcation 
process we turn to the calculation of the domains within which the periodic 
orbits produced by this process exist. 

3.2. Period-Doubling Bifurcation 

The periodic orbits born at the fold line by a tangent bifurcation 
undergo a period-doubling (subharmonic) bifurcation when one eigenvalue 
of the T map is A = - 1. The locus of such bifurcations can be computed 
from the characteristic equation (3.4) with A = - 1. Denoting the value of 
z 0 at such loci by z~'* we find 

2 + ' /2  

[  loz,. __] xc os  ~o+  ] ~  g- -z-  + arctan ~~ + arctan d ' ( ~ ~  
0 ~ '(~o) 

_ Rp  z~* 

This equation should be compared with the analogous equation for the 
tangent boundary [Eq. (3.5)]. Assuming again that j , 2 +  ~ ,2 v a  0, the 
solutions of this equation are in first approximation the same as those of 
Eq. (3.5); the difference between them appears in the second approxima- 
tion: 

zS(q0o) - zS*(rp0 ) = e-2,~n(IXl/~0)[ O(e-2~,(o/,o)) + O(e-Z"l(Lxl-p)/~])] 

(3.13) 

As in the earlier calculation for the tangent bifurcation, this result may be 
substituted into the P map to obtain the loci of such bifurcations in the 
( A , B )  plane. Letting /~h• signify the critical parameter values where 
subharmonic bifurcations occur for a one-parameter family of systems (1.1) 

r 1 transverse to the codimension one L uoset H of homoclinic systems we may 
now state the following: 

(1) If p < 1/2, the stable node of the stable node-saddle pair of the T 
map becomes a saddle at the harmonic boundary. The first term on the 
right side of Eq. (3.13) is dominant in this case and the stability window of 
the stable node is 

I~t~ * - Ix2• = O ( e  -4'~"(p~176176 (3.14) 
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(2) If 1/2 < v < 1, the unstable node of the unstable node-saddle 
pair of the T map becomes a saddle at the harmonic boundary. In this case 
the second term on the right side of Eq. (3.13) is dominant and 

/.t t-~ --/In h* = O(e-2•"(ix~176176 (3.15) 

where(p 0_+i~o0,~0) are the eigenvalues of the saddle fixed point for the 
parameter value/~ = 0. 

The results of this section for the important case of v < 1/2 are 
displayed in the schematic bifurcation diagram in (z0, #) plane of Fig. 3. 
The figure shows how the various solutions are connected across the/z = 0 
line. The supercritical period-doubling bifurcations indicated in the figure 
are suggested by one-dimensional-map models like the one discussed in 
Section 5. A full study of such bifurcations entails a study of the periodic 
orbits of higher powers of the T map. Although we do not study these 
bifurcations here we shall comment on some of their features in Sections 4 
and 5. 

In addition to the bifurcation of periodic orbits studied here, there also 
exist bifurcations generating a countable set of additional homoclinic flows 
as shown in Refs. 6 and 7, which all occur on a single side of the 
hypersurface H of homoclinic systems (the side/~ > 0 in Fig. 3 because, as 
pointed out in Section 2, the T 1 map preserves the orientation of the phase 
space). The bifurcation analysis carried out here applies to each of these 

\ 
\ 

Fig. 3. 

Z o 

i \  ............ 

!'-<7 
. . . .  ~ F [ 

--. / 

// 

kth t4t-th 0 h . t .  ~h. 

Bifurcation diagram of periodic orbits near homoclinic systems in the case ]O0/~.o[ 
< 1/2. 
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homoclinic flows so that, besides the sequence of tangent bifurcations 
associated with the original homoclinic flow depicted in Fig. 3, there exist 
such sequences satisfying the accumulation rate (3.8), associated to each of 
these homoclinic flows. In the case 0 < v < 1/2, this result shows the 
complexity of the bifurcations of the periodic attractors near Sil'nikov's 
homoclinic systems and suggests that the coexistence of several attractors in 
a given flow near these systems is a possibility. 

3.3. Cusp Bifurcation 

Besides the fold singular points, the P mapping may also contain cusp 
singular points (as mentioned at the beginning of Section 3), which are 
isolated points on the folds: they are the turning points of the envelope 
curve. At a cusp point a bifurcation occurs with birth of two new solutions 
in addition to an old one. If the periodic orbit existing outside the cusp is 
stable, then bistability arises within the cusp and is associated with hystere- 
sis. 

A point p is a cusp point if the following three conditions are 
satisfied:~ ~5) 

J(p) = 0 (3.16) 

(V. D)P(?) = 0 (3.17) 

(V. D)(V. D)P(p) 0 (3.18) 

where (V- D)  is the derivative in the direction of V, which is the vector 
tangent to the fold curve in the (%, z0) plane 

V = ( - ~wJ, OzJ ) (3.19) 

Thus a cusp point is an isolated point on a fold which is solution of the two 
following equations with two unknown variables 

J = 0 (3.16') 

K, = azA O~0J - O~ooA OzJ = 0 (3.20) 

In the following section, we will show that cusp points may exist in the P 
mapping besides fold points near homoclinic systems for which the qua- 
dratic terms of the T l map are dominant [see Eqs. (2.5)]. 

In this section we have intentionally presented the results in a rather 
general form in order to describe the gross features of the bifurcation 
structure near homoclinic systems. We have also focused on the case where 
the Jacobian of the T l map, Ql, is nonzero for ~0 near zero. In the 
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following section we give detailed analysis of a specific model of the T 1 
map for a strongly contractive system where Q] = 0. 

4. QUADRATIC MODEL 

A common mechanism for the appearance of a homoclinic orbit in a 
very contractive flow involves the folding of the unstable manifold by the 
global part of the flow followed by its reinjection in the vicinity of the 
saddle focus. This mechanism exists for a number of differential-equation 
systems; in particular, in a R6ssler model, (16~ which we use to illustrate 
some of the phenomena described in this paper. 

A model of a flow where such a mechanism operates is studied with 
the aid of a global T 1 map whose quadratic part is dominant. Recall that 
our previous discussion concerned a T1 map with a dominant linear part. 
The full analysis of the quadratic model reveals the existence of a countable 
set of cusp bifurcations associated with hysteresis and bistability in the 
flow. Our study indicates that these phenomena are expected in the vicinity 
of homoclinic systems. The utility of the two-parameter study of bifurca- 
tion processes given in the preceding section is clearly demonstrated for 
these folding flows: the cusp bistabilities are fully revealed only in the 
two-parameter plane. 

The global T 1 map for the quadratic model is obtained from Eqs. (2.5) 
by limiting the functions zr and ~ ( % )  to quadratic nonlinearities. We 
select the form 

X = r - -  "qq0 0 
TI:  (4.1) 

Y l = - 8  + cep~ + dz  o 

with the parameters 7, d (and c) chosen positive so that T 1 conserves the 
orientation in the three-dimensional phase space. The qg~ part of TI gives 
rise to the folding process, while c and 8 model the manner in which the 
flow is reinjected near the unstable fixed point. Clearly the ( A , B ) -  
parameter space is the (c, 8) plane for this model. From Eqs. (2.7) and (4.1) 
the set of homoclinic systems in this plane is the parabola 8 = c(~/71) 2. If 
77 = 0 homoclinic systems exist in the half line r = 0, 8 1> 0. Since the 
Jacobian of the T I map is Q] = ~/d, the case ~/= 0 corresponds to an 
infinitely contractive global map. This very contractive character is com- 
mon to many physical systems and responsible for the fact that they admit 
a description in terms of one-dimensional maps. We confine our discussion 
to this 7/= 0 limit. Since the limit IX I >> Ipl a flow near homoclinicity 
satisfying X < 0 < p is strongly contractive, we assume that p appearing in 
T O satisfies p < 1/2. 
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We may now follow the bifurcation analysis of Section 3. The explicit 
form of the P map is 

i z v Zo = R ( Z )  c~176176 + ~-~ l~ Z ) (4.2) 

ZO ~' . ~ ZO 

The tangent bifurcation loci are the solutions of 

J = OzoC~o8 - ~oeO~o8 = 0 or 

o~ RO e_(O/,~)~. + O(e_(/xt/,o)=. ) 2c%cos(rpo-  a* + arctan O )  - (p2 + ~o2) '/2 

(4.3) 

where 

~o. z~ (4.4) a* = [~l ,og ~ -  

In the limit z~' ~ 0, ~ * ~  m and the right side of Eq. (4.3) vanishes, yielding 
two sets of solutions: either 

c o s ( % -  a* + arctan -~ ) = 0  (4.5) 
0 

or 
q% = 0 (4.6) 

The solutions of Eq. (4.5) have the same character as those analyzed in 
Section 3, while the new solution is the spiral q~o = 0 [cf. Eqs. (4.2)] in the 
(e, d) plane. In Section 3, a solution like Eq. (4.6) was excluded because of 
the assumption that d ' ( % ) 2  + ~ ,(~0)2 ~ 0. 

If a* is finite the solutions of Eq. (4.3) are the intersections of a cosine 
function and an exponential function whose intersection with the a* = 0 
axis is proportional to q0o ~. For a* large enough and % =/= 0 there always 
exists a countable set of solutions, which is 

a* = 2~rn + 3w/2 + cp~ + arctan ~o0 + Aq,* 
(4.7) 

A,t'* = ~ RO e-(~176 + O(e-(IXl/'~ 
2c%(p 2 + 0~2) 1/2 

provided n is large enough. When % ~ 0 from positive or negative values 
these solutions disappear pairwise at points (a*,ep0) where the cosine 
function is tangent to the exponential function. Hence, the asymptotic 
solutions are connected pairwise when % ~ 0. 
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Following Section 3 we may also study the harmonic (period-doubling) 
boundaries for this model. The loci of these boundaries are found from the 
solutions of 

2CrpoCOS(Cpo- c~** + arctan ~ )  = Rp e_(O/,~),,** 
(o2 + ~2)]/2 

+ O(e -(Ixl/~)~*') (4.8) 

where a** is given by Eq. (4.4) with z~ replaced by z~*. According to the 
stability analysis in Section 3, since v < 1//2 pairs of stable node-saddle 
orbits are born at the tangent boundary with a domain of existence 
bounded by the line of period-doubling bifurcations. 

In order to reveal the full periodic orbit structure we have solved Eqs. 
(4.3) and (4.8) numerically for the following parameter values: O = 0.2, 
r = 1, X = - 5 ,  c = 0.1, d = 0.1, and R = Z = 1. We have taken a* and a** 
large enough so that the last terms in Eqs. (4.3) and (4.8) can be neglected. 
The calculation is carried out by selecting a ~0 and determining a* or a**; 
these values are then substituted into the P map to determine the phase 
diagram in the (c,6) plane. The results of the calculation are shown in 
Fig. 4. 

The figure displays some interesting geometrical features of the bifur- 
cations. The global structure of the periodic attractor domain is governed 
by the spiral geometry arising from the saddle-focus character of the 
stationary state. In addition, it is clear that all the periodic attractors are 
connected among themselves in the two-parameter space. Thus, with two 
control parameters the system can be deformed continuously to move from 
one branch on the spiral to another. An enlargement of one of the regions 
where the different branches are connected with the spiral domain is shown 
in Fig. 4b. The cusp structure of inner tangent boundary is clearly evident 
in this enlargement. This structure is typical of a system exhibiting bistabil- 
ity and hysteresis phenomena. 

The locations of the cusp points can be simply computed for this 
model. They are solutions of the Eqs. (3.16) and (3.20). The cusp points are 
expected near the connection points between the solutions (4.5) and (4.6) of 
the envelope. The solutions in the phase space, of the cusp equations 
satisfying this requirement are 

z o = Z e x p { _  __'X' I ~ ~o ) ]}  ~0 p~r + ~ + arctan--  + O(e -(~ (4.9) 
p 

%= ~-c ~ Z [1+ O(z~/3)] (4.10) 
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(c) 

Fig. 4. (a) Periodic attractor existence domain ~r in the (e,g)-parameter space for the 
quadratic model (4.1). ~ is contained between the tangent t and the period-doubling h 
bifurcation loci. The curve F is the set of homoclinic systems. M is the end point of the set F. 
Cp, . . . ,  Cp+ 3 are cusp points. The harmonic boundary is not drawn at the left of line 1. (b) 
Enlargement of the ~r domain near the Cp cusp bifurcation, t and h are, respectively, the 
tangent and the period-doubling boundaries. The broken line s is the set of systems containing 
a superstable periodic orbit. Bistability and hysteresis occur near the cusp point Cp. (c) 
Schematic representation of the tangent and harmonic boundaries of the 7r domain. 

w h e r e  p is a ( large e n o u g h )  in teger .  I n  the  ( e , 8 )  p lane ,  the  cusp  po in t s  a re  

_-( 

, (4.11) 
p 

with  z 0 g iven  by  (4.9). T h e s e  so lu t ions  sat isfy the  last  c o n d i t i o n  (3.19) a n d  

so the  cusp  po in t s  a re  n o n d e g e n e r a t e .  A s y m p t o t i c a l l y  the  cusp  po in t s  a re  
l o c a t e d  o n  the  l ine  

to8 e + p 9 = O ( z  4"/3) (4.12) 

Q I - - 0  for  the  in f in i t e ly  c o n t r a c t i v e  m o d e l  s t ud i ed  h e r e  a n d  thus  

D*  = 0 [Eq. (3.9)]. S ince  o n e  of  the  e igenva lues  is a lways  ze ro  the  n o t i o n  of  
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superstable orbits can be introduced. Such orbits exist when both eigenval- 
ues vanish. The superstable loci can be calculated easily: one of these loci is 
the spiral r = 0 while the others form a countable set and are connected to 
the spiral as shown by the dashed lines s in Fig. 4b. The notion of 
superstable orbits is especially useful for studying the above phenomena in 
one-dimensional-map model. This analysis will be carried out in Section 5 
where the nature of the bistabilities mentioned above is discussed in more 
detail. 

The results of this section demonstrate the cusp bistabilities are likely 
to exist near homoclinic systems involving a global folding of the unstable 
manifold of the saddle focus. For the infinitely contractive model there 
exists a countable set of cusp bistabilities in the vicinity of the c = 8 = 0 
system. However, when 7/4: 0, QI 4= 0 and the analysis presented in Section 
2 where linear terms dominate the behavior applies. The line of homoclinic 

a ( - -  
b:O.3 

0 .4  

0.3 

,01 

' 4  5. g"  

Fig. 5. Two-parameter (a,c) state diagram of the periodic attractors in the RSssler model 
(4.12). ~r: periodic attractor existence domain. Curve (a): accumulation line of the period- 
doubling sequence occurring below (a). Curve (b): set of systems containing a homoclinic orbit 
F 1 associated with the saddle-focus (0, 0, 0). Curve (c): transition line between "spiral"- and 
"screw"-type chaos associated with homoclinic orbit 171 . MI: end point of the line (b). c 3, e4: 
two successive cusp bifurcation points, t: tangent bifurcation boundary of ~r. h: period- 
doubling bifurcation boundary of ~r. 
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systems is a parabola when T/4:0 whose curvature depends on 7. Very near 
to the set of homoclinic systems the envelope or tangent boundary is closely 
parallel to the parabola and does not contain a cusp point on such a fine 
scale. Thus, in a flow cusp bifurcations are expected only on a large scale 
and in finite number. However, the infinite contraction limit is a theoretical 
idealization which allows one to understand bifurcation phenomena near 
the onset of homoclinic behavior, in particular the cusp bifurcations which 
were studied in Ref. 12 for the following R6ssler model (16)" 

2 =  y z 

j~ = x + a y  (4.13) 

- -  b x  - c z  + x z  

Earlier work (6) has established the location of the line of homoclinic 
systems F 1 in a two-parameter phase diagram for this system. The results of 
the present study suggest that the line F 1 acts as an organizing feature for 
the periodic orbit structure and their associated cusp bistabilities. That this 
is indeed the case is confirmed by the results in Fig. 5. This figure extends 
the results presented in Ref. 12 and shows that the period - 3  cusp to the 
right of F 1 is continuously connected to a cusp bistability to the left of F 1 . 
This figure should be compared with Fig. 4 as well as with Fig. 10 of the 
following section, which analyzes a class of one-dimensional maps. 

5. O N E - D I M E N S I O N A L  M A P  M O D E L  

Many of the above mentioned aspects of the periodic orbit structure 
near homoclinic systems in the flow admit a simple description in terms of 
a class of two-parameter, multi-extremum, one-dimensional maps. One- 
dimensional-map models are most appropriate for the study of strongly 
dissipative systems: Eqs. (1.1) describe such systems provided the contrac- 
tion of the flow along the stable manifold is much greater than the 
expansion along the unstable manifold; i.e., IX[ >> IP] and consequently 
[0/?q < 1/2. Thus one might expect that many of the features of the 
bifurcation structure discussed in Section 4, which were deduced 'hnder the 
same conditions, are amenable to study by a one-dimensional map. 

Consider the next-amplitude maps derived from Poincar6 surfaces of 
section transverse to the two-dimensional unstable manifold of the flow (cf. 
Figs. 6 and 7a). A distinctive feature that typifies such maps of the flow 
near homoclinic orbits is the return of iterates to the vicinity of the unstable 
fixed point. The orbits of the map mimic the behavior of the trajectories of 
the flow: points near the unstable fixed point are mapped away from it in 
small steps corresponding to the winding motion of the flow trajectories on 
the unstable manifold of the saddle focus; the existence of a nearby 
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2  lPll / - ' X  

Fig. 6. Schematic representation of the flow on the Rossler (spiral) strange attractor. The 
unstable manifold Wu(P1) winds around the unstable fixed point P1 and is reinjected onto the 
attractor disk near PI; W,(Pt) is the stable manifold of Pt. The intersections of these 
manifolds with the plane ~r 2, Wu(P1) N ~r 2 and W~(PI) n ~r 2 are a folded line and a point, 
respectively. ~1 is a surface-of-section plane transverse to the unstable manifold. The intersec- 
tion of Wu(Pl) with this plane, W,(P~) A ~rl, is also shown. For the construction of the next 
amplitude maps in Fig. 7, ~r I was selected to be ~rl: y = 0, x < 0. 

homocl in ic  system ensures tha t  the orbi ts  of the flow and  thus those of the 
m a p  are re tu rned  to the ne ighbo rhood  of the uns tab le  f ixed point .  The  
impor t an t  features  of such maps  are: the l inear  region, with s lope s 
= exp(2~rp/w) de t e rmined  by  the flow winding  mot ion;  the ( typica l ly  
ra ther  b road)  quadra t i c  m a x i m u m  arising f rom the smooth  pr inc ipa l  fold-  
ing of the flow into itself (Fig. 6); and  a m i n i m u m  region which accounts  
for the re inject ion of the flow trajector ies  into the vicini ty of the uns tab le  
f ixed po in t  as the screw chaos  line is crossed.  A m a p  with these general  
features is sketched in Fig. 8. As ind ica ted  in the figure two pa rame te r s  
can  be  used to cont ro l  the d y n a m i c a l  processes  of interest :  e which 
measures  the height  of the m i n i m u m  and  thus di rect ly  controls  the reinjec- 
t ion process,  as e ~ 0 m a p  i terates re turn  to the origin; and  the loca t ion  of 
the m a p  min imum,  m = 1 - / J ,  which de te rmines  the extent  of the pene t ra -  
t ion of the system in the screw chaos  region.  If ~ < 0 the m i n i m u m  
d i sappears  f rom the one-d imens iona l  map .  Thus,  in the (e, 8) p lane  the 
half- l ine e = 0, 8 > 0 cor responds  to the line of homocl in ic  systems I? of the 
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Fig. 7. (a) Next  ampli tude map  for the R6ssler screw strange at tractor for a = 0.34, b = 0.3, 
and c = 5.8, point  01 in Fig. 5. (b) Same as (a) for a = 0.36, b = 0.3, and c = 4.2, point  02 in 
Fig. 5. 
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Xt+l 

T 
0 _L 

0 M m 1 
xt I--g4 

Fig. 8. A typical next amplitude map of the flow in the vicinity of a homoclinic system 
exhibiting a linear region near the origin, a broad quadratic max imum M and a sharper 
min imum m. The bifurcation parameters r and 8 are indicated. Also shown are coexisting 
superstable period-2 and period-3 orbits. 

flow and the line 8 = 0 corresponds to the screw chaos line Y. The map 
parameters ~ and 8 are not identical to those introduced in Section 4 but 
play similar roles. 

In order to illustrate the properties of such a map model of the flow in 
a concrete fashion we consider a specific map with these features, but the 
qualitative aspects of our results are general. Referring again to Fig. 8 we 
parameterize the three relevant regions of the map in the following way: 

[ ft (x )  = sx, linear region 

f ( x )  = t f ~ ( x )  = 1 - cM(x  - M )  2, maximum region (5.1) 

[f , , , (X)=[S2m(X -- m) 2 + e2] 1/2,  minimum region 

The specific form of the map in the minimum region reflects the observed 
sharpening of map minimum as the homoclinic system is approached (cf. 
Fig. 7a). 4 We focus on the sequence of stable period-n orbits (n = 2, 3, 
4 . . . .  ) that consist of n - 2 iterates on the linear map and one iterate in 

4 The precise form of fro(x) fails to reflect one feature of the next-amplitude maps  derived 
from the flow: from a consideration of the reinjection process one may argue that the ratio 
of the slope to the right of m to that to the left of m for c = 0 is exp0rp/~o). The expression 
for f,~(x) in Eq. (5.1) is symmetric with respect to m. While some quantitative aspects may be 
influenced by our form of fro, the properties described below are independent of this choice. 
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each of the maximum and minimum regions. The structure of this sequence 
in the (e,6) plane is most conveniently characterized by examining the 
superstable orbits, i.e., those period-n orbits where one of the iterates lies 
exactly at a map extremum. Each extremum in the map can spawn a 
separate family of superstable orbits. This feature was previously noted in a 
cubic map model of the R6ssler flow in the period-3 region where the 
particular configuration of the superstable lines was shown to give rise to 
the hysteresis and bistability. (12) The results presented below show that the 
two-extremum map of Eq. (5.1) duplicates the local features of the bifurca- 
tion structure discussed in the Sections 3 and 4. 

The two families of superstable lines are constructed by requiring that 
the minimum or maximum belongs to the orbit: for a period-n orbit the 
slope of the nth composition of the map is zero and the orbit has maximum 
stability. The family of superstable orbits spawned by the minimum is 
determined by the equation, 

f (")(m) =fM(~(n-2) ( fm(m)) )  = 1 -- CM(S"-2e -- M )  2= m = 1 - 6 (5.2) 

and thus 

6 = c M s 2 ~  Ms-~ ~ (5.3) 

If c M and M are assumed independent of 6 and e the minimum superstable 
lines are locally parabolas centered at M s  -n+2 with curvature 2cMs z"-4. 
The above analysis applies only for small 6 and e where the orbits have the 
assumed structure; the crossing of the superstable lines of members of this 
family when 6 becomes large signals a breakdown of the approximation 
since two orbits with different period cannot have the fixed point m in 
common. The noncrossing constraint implies that the slopes of these lines 
must increase more strongly as 8 increases than is predicted by (5.3), but a 
complete specification of the map is necessary to fix this detail. If we 
consider 6 fixed at a large positive value the sequence of e values corre- 
sponding to superstable orbits is given by 

= + _ _  s 2 - " ~ s - n = e x p  -2rr  n ( 07. ) (5.4) 
CM 

in accord with Eq. (3.8). The superstable lines associated with the maxi- 
mum follow from the condition that M is a fixed point of period n: 

M = ft("-2>(f~(fM (M)))  = S"-2[(Sm6)2+ E2] 1/2 (5.5 t 

o r  

(sins)2= (a4s2-.)  (5.6) 
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Fig. 9. Superstable lines for periods 2, 3, 4, and 5 associated with the max imum and 
min imum of the map. The lower crossing points on the ~ = 0 screw chaos line E correspond to 
doubly superstable orbits, while the upper crossing points correspond to coexisting superstable 
orbits. The map parameters used in the construction of this figure are: s = 2, M = 0.6, s m = 4, 
and c M = 6. 

The configuration of the maximum and minimum superstable lines is 
displayed in Fig. 9, which illustrates a number of features associated with 
this sequence of orbits. In accord with Eq. (5.4) the family of superstable 
orbits spawned by the minimum accumulates at the line of homoclinic 
systems F, while the family of superstable orbits associated with the 
maximum accumulates at the point M, which is the end point of the line of 
homoclinic systems. The scaling of this latter family along the line c = 0 
easily follows from Eqs. (5.6): 

8 n = _ M s2-n~exp(-2~r  ~ n )  (5.7) 
S m 

Furthermore, the superstable lines for each member of the sequence of 
period-n orbits cross twice. By construction of the map, the lower crossings, 
which always lie on the screw chaos line Y., correspond to doubly supersta- 
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ble orbits where both the maximum and minimum belong to the orbit. 
Thus, the point M is also the accumulation point of the doubly superstable 
orbits. While the lower crossings of the superstable lines along X corre- 
spond to doubly superstable orbits, the upper crossings are related to 
bistability where two distinct superstable orbits with period-n coexist; these 
upper crossing points also accumulate at M. This (local) bistability between 
period-n orbits of the sequence should be distinguished from the bistability 
that arises from the crossing of the superstable lines associated with 
different members sequence (cf. Fig. 9). (As an illustration of this latter 
type of bistability coexisting superstable period-3 and period-2 orbits are 
shown in Fig. 8.) We discuss the local bistability in more detail below. The 
structure in Fig. 9 thus implies a complex web of bistabilities in the vicinity 
of I': orbits of the minimum sequence with high periods coexist with 
members of the maximum sequence with increasing periods as M is 
approached. Such bistability can only exist above Y, since below this line 
the map possesses a single extremum and the family spawned by the 
minimum cannot exist. 

We next construct the tangent and harmonic boundaries which deter- 
mine the limits of stability of the period-n orbits. This will allow us to relate 
the boundary structure in the one-dimensional map directly to the analo- 
gous structure described in Section 4. 

These boundaries may be determined easily from the solutions of the 
simultaneous equations, 

f(")(x)-x=O and f(")'(x)= ( +1 - I  
For the map of Eq. (5.1) we find 

and 

tangent (5.8) 
harmonic 

- - .  = M ( 5 . 9 )  

u3- ( ~.-~- ++_O~nl)U-.T-- MOtnl =O (5.10) 
r 

where u = x -  M and a n = 2s2"-4s~c 2. The upper signs again refer to 
tangent boundaries and the lower signs to harmonic boundaries. We first 
note that for e = 0, i.e., along the line of homoclinic systems, these equa- 
tions are easily solved to yield 

M 
sn--2Sm + 3 

Hence on F there exists a sequence of stable periodic orbits accumulating 
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Fig. 10. Tangent t and harmonic h boundaries in the (r 8) plane for periods 2, 3, and 4. A 
cusp structure similar to that of Section 3 is clearly evident. The map parameters are the same 
as for Fig. 9. 

at M whose windows of stability have width 

8 h - 8 t = (CMS2S2n-4 ) - l~exp ( - -4qr  -~n)  (5.12) 

The boundaries are sketched in Fig. 10, which shows that each member of 
the sequence possesses a cusp structure similar to that found in Section 3. 
The characteristic configuration for a period-n orbit consists of an outer 
tangent boundary t where the orbit is born by a tangent bifurcation; the 
inner crossing harmonic boundaries h signal the subharmonic bifurcation 
of period n to period 2n. Within the cusp shaped tangent boundary t 
bistability between a period-n orbit and its coexisting mate and its sub- 
harmonics is observed. The dynamics in such a region has been described 
in some detail earlier for related one-dimensional maps. (12) 

The analysis of the flow in Sections 3 and 4 has demonstrated that the 
period-n orbits in the sequence are connected in a spiral structure--the 
orbits can be continuously deformed into one another by tuning the two 
bifurcation parameters. This feature is outside the scope of the one- 
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dimensional map of Eq. (5.1), which is capable of describing the behavior 
for e > 0 only. The restriction arises from the selection of the surface of 
section used to construct the next-amplitude map. Figure 6 illustrates this 
point for the R6ssler flow. Using the ~r I plane for the surface of section, 
map parameter e > 0 corresponds to the situation where the flow is rein- 
jected onto the attractor disk near the unstable fixed point to the right of 
the stable manifold. If one continuously tunes the flow parameters to the 
region left of F 1 the flow is now reinjected on the left side of the stable 
manifold and the corresponding next amplitude map possesses a disconti- 
nuity (cf. Fig. 7b). Such artifacts in the map can be removed by selecting a 
new-surface-of-section plane. Thus, a full description of the orbit structure 
in terms of the one-dimensional map also entails the choice of the appropri- 
ate section plane as the flow parameters are tuned. We shall not pursue this 
aspect further here but instead briefly comment on a related phenomenon 
near homoclinicity, which is suggested by the one-dimensional map. 

We have calculated and described the harmonic boundaries where a 
period-n orbit born by a tangent process bifurcates to yield an orbit with 
period 2n. For a map with the structure in Fig. 8 there exists a cascade of 
such subharmonic bifurcations yielding orbits with periodn 2~,which exhib- 
its a number of interesting features. In particular, for such two-parameter, 
two-extremum maps there exists an infinite hierarchy (Cantor set) of cusp 
bistabilities for each member of the sequence of period-n orbits. The 
mechanism of the origin and scaling properties of this cusp hierarchy have 
been described in some detail for the sine map. ~17~ Since the primary 
period-n orbits are all continuously connected on the spiral structure, the 
cusp hierarchy arising from the subharmonic bifurcations will also form 
part of this connected structure. The discussion of this section suggests that 
such cusp hierarchies should be a common feature of flows near homoclinic 
systems. 

6. D I S C U S S I O N  

The two-parameter analysis performed in this paper has revealed a 
remarkable bifurcation structure in the vicinity of Sil'nikov's homoclinic 
systems: a countable number of stable periodic solutions; period-doubling 
transitions from these orbits, which potentially can lead to chaotic attrac- 
tors via Feigenbaum cascades; and cusp bifurcations, with concomitant 
bistability and hysteresis. Thanks to the latter, different periodic orbits are 
continuously connected in the parameter space. Moreover, their stability 
windows are enlarged near the cusp singularities. 

We have established the existence of scaling properties of the sequence 
of periodic solutions in the parameter space, which are determined entirely 
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by the parameters p and c0 of the underlying flow. Two properties which at 
first appear to be independent are thus linked near homoclinicity: a global 
feature like the bifurcation of the periodic attractors, and a local one like 
the characteristics of the time evolution of the system near the stationary 
state. 

We believe that our results illustrate the importance of homoclinic 
orbits as an organizing principle of the bifurcations leading to complex 
nonperiodic behavior in large classes of dynamical systems. Furthermore, 
they provide a plausible interpretation of a number of experimental results 
in which alternating periodic and chaotic sequences are observed. For 
instance, the Belousov-Zhabotinski reaction (18-2~ a regular sequence of 
period-n regimes with increasing periods is interrupted by chaotic regions, 
as the bifurcation parameter is varied. Characteristically, the chaotic state 
lying between period-n and period-(n + 1) orbits is the chaotic mixture of 
these neighboring periodic orbits. The experiments also show that a period- 
n orbit may lose its stability and become chaotic via a period-doubling 
cascade, whereas the period-(n + l) orbit is born by a tangent bifurca- 
tion. (21) Similar sequences have been observed in electronic switching 
circuits. (22) All this is strongly reminiscent of the behavior depicted in 
Fig. 3. 

Needless to say, the problem of bifurcations in near homoclinic 
systems is far from solved. One obvious extension of our analysis is to 
systems of four or more variables. Some results in this area are already 
available (10) but so far the bifurcation structure has not been revealed in a 
satisfactory way. Another direction is toward a deeper understanding of the 
effect of the complex transitions going on near a homoclinic system on the 
ergodic properties of the flow. Moreover, it would be interesting to see 
whether homoclinic orbits and their bifurcations can lead to a better 
understanding of certain transition phenomena observed in physicochem- 
ical systems in which a fixed point of the saddle-focus type is generated 
through the coupling between an oscillatory and a monotonic mode. 
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